TU Darmstadt / ULB / TUbiblio

Ultrafast ion sieving using nanoporous polymeric membranes

Wang, Pengfei ; Wang, Mao ; Liu, Feng ; Ding, Siyuan ; Wang, Xue ; Du, Guanghua ; Liu, Jie ; Apel, Pavel ; Kluth, Patrick ; Trautmann, Christina ; Wang, Yugang (2018)
Ultrafast ion sieving using nanoporous polymeric membranes.
In: Nature Communications, 9 (1)
doi: 10.1038/s41467-018-02941-6
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The great potential of nanoporous membranes for water filtration and chemical separation has been challenged by the trade-off between selectivity and permeability. Here we report on nanoporous polymer membranes with an excellent balance between selectivity and permeability of ions. Our membranes are fabricated by irradiating 2-μm-thick polyethylene terephthalate Lumirror® films with GeV heavy ions followed by ultraviolet exposure. These membranes show a high transport rate of K+ ions of up to 14 mol h−1 m−2 and a selectivity of alkali metal ions over heavy metal ions of >500. Combining transport experiments and molecular dynamics simulations with a polymeric nanopore model, we demonstrate that the high permeability is attributable to the presence of nanopores with a radius of ~0.5 nm and a density of up to 5 × 1010 cm−2, and the selectivity is ascribed to the interaction between the partially dehydrated ions and the negatively charged nanopore wall.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Wang, Pengfei ; Wang, Mao ; Liu, Feng ; Ding, Siyuan ; Wang, Xue ; Du, Guanghua ; Liu, Jie ; Apel, Pavel ; Kluth, Patrick ; Trautmann, Christina ; Wang, Yugang
Art des Eintrags: Bibliographie
Titel: Ultrafast ion sieving using nanoporous polymeric membranes
Sprache: Englisch
Publikationsjahr: 2018
Verlag: Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature Communications
Jahrgang/Volume einer Zeitschrift: 9
(Heft-)Nummer: 1
DOI: 10.1038/s41467-018-02941-6
Kurzbeschreibung (Abstract):

The great potential of nanoporous membranes for water filtration and chemical separation has been challenged by the trade-off between selectivity and permeability. Here we report on nanoporous polymer membranes with an excellent balance between selectivity and permeability of ions. Our membranes are fabricated by irradiating 2-μm-thick polyethylene terephthalate Lumirror® films with GeV heavy ions followed by ultraviolet exposure. These membranes show a high transport rate of K+ ions of up to 14 mol h−1 m−2 and a selectivity of alkali metal ions over heavy metal ions of >500. Combining transport experiments and molecular dynamics simulations with a polymeric nanopore model, we demonstrate that the high permeability is attributable to the presence of nanopores with a radius of ~0.5 nm and a density of up to 5 × 1010 cm−2, and the selectivity is ascribed to the interaction between the partially dehydrated ions and the negatively charged nanopore wall.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Ionenstrahlmodifizierte Materialien
Hinterlegungsdatum: 10 Dez 2018 09:01
Letzte Änderung: 29 Feb 2024 11:11
PPN:
Sponsoren: This work was supported by National Science Foundation of China (Grant Nos. 11335003 and 31670852) and the National Magnetic Confinement Fusion Energy Research Project of China (2015GB113000)., F.L. acknowledges the support from Peking University’s 100-talent plan., P.K. acknowledges the Australian Research Council for financial support., Christina Trautmann acknowledges support from the Deutsche Forschungsgemeinschaft (DFG-FOR1583)., The MD simulation was performed on the High Performance Computing Platform of the Center for Life Sciences, Peking University. Author information Author notes P. Wang and M. Wang contributed equally to this work. Affiliations State Key Laborato
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen