TU Darmstadt / ULB / TUbiblio

On the homogenization of thin perforated walls of finite length

Delourme, Bérangère ; Schmidt, Kersten ; Semin, Adrien :
On the homogenization of thin perforated walls of finite length.
[Online-Edition: http://content.iospress.com/articles/asymptotic-analysis/asy...]
In: Asymptot. Anal., 97 (3-4) S. 211-264.
[Artikel] , (2016)

Offizielle URL: http://content.iospress.com/articles/asymptotic-analysis/asy...

Kurzbeschreibung (Abstract)

The present work deals with the resolution of the Poisson equation in a bounded domain made of a thin and periodic layer of finite length placed into a homogeneous medium. We provide and justify a high order asymptotic expansion which takes into account the boundary layer effect occurring in the vicinity of the periodic layer as well as the corner singularities appearing in the neighborhood of the extremities of the layer. Our approach combines the method of matched asymptotic expansions and the method of periodic surface homogenization.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Delourme, Bérangère ; Schmidt, Kersten ; Semin, Adrien
Titel: On the homogenization of thin perforated walls of finite length
Sprache: Englisch
Kurzbeschreibung (Abstract):

The present work deals with the resolution of the Poisson equation in a bounded domain made of a thin and periodic layer of finite length placed into a homogeneous medium. We provide and justify a high order asymptotic expansion which takes into account the boundary layer effect occurring in the vicinity of the periodic layer as well as the corner singularities appearing in the neighborhood of the extremities of the layer. Our approach combines the method of matched asymptotic expansions and the method of periodic surface homogenization.

Titel der Zeitschrift, Zeitung oder Schriftenreihe: Asymptot. Anal.
Band: 97
(Heft-)Nummer: 3-4
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 19 Nov 2018 21:09
DOI: 10.3233/ASY-151350
Offizielle URL: http://content.iospress.com/articles/asymptotic-analysis/asy...
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen