TU Darmstadt / ULB / TUbiblio

Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm

Reuper, Björn ; Becker, Matthias ; Leinen, Stefan (2018)
Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
In: Sensors, 2018, 18 (9)
doi: 10.3390/s18093052
Artikel, Zweitveröffentlichung

Kurzbeschreibung (Abstract)

Localization algorithms based on global navigation satellite systems (GNSS) play an important role in automotive positioning. Due to the advent of autonomously driving cars, their importance is expected to grow even further in the next years. Simultaneously, the performance requirements for these localization algorithms will increase because they are no longer used exclusively for navigation, but also for control of the vehicle’s movement. These requirements cannot be met with GNSS alone. Instead, algorithms for sensor data fusion are needed. While the combination of GNSS receivers with inertial measurements units (IMUs) is a common approach, it is traditionally executed in a single-frequency/single-constellation architecture, usually with the Global Positioning System’s (GPS) L1 C/A signal. With the advent of new GNSS constellations and civil signals on multiple frequencies, GNSS/IMU integration algorithm performance can be improved by utilizing these new data sources. To achieve this, we upgraded a tightly coupled GNSS/IMU integration algorithm to process measurements from GPS (L1 C/A, L2C, L5) and Galileo (E1, E5a, E5b). After investigating various combination strategies, we chose to preferably work with ionosphere-free combinations of L5-L1 C/A and E5a-E1 pseudo-ranges. L2C-L1 C/A and E5b-E1 combinations as well as single-frequency pseudo-ranges on L1 and E1 serve as backup when no L5/E5a measurements are available. To be able to process these six types of pseudo-range observations simultaneously, the differential code biases (DCBs) of the employed receiver need to be calibrated. Time-differenced carrier-phase measurements on L1 and E1 provide the algorithm with pseudo-range-rate observations. To provide additional aiding, information about the vehicle’s velocity obtained by an odometry model fed with angular velocities from all four wheels as well as the steering wheel angle is incorporated into the algorithm. To evaluate the performance improvement provided by these new data sources, two sets of measurement data are collected and the resulting navigation solutions are compared to a higher-grade reference system, consisting of a geodetic GNSS receiver for real-time kinematic positioning (RTK) and a navigation grade IMU. The multi-frequency/multi-constellation algorithm with odometry aiding achieves a 3-D root mean square (RMS) position error of 3.6 m/2.1m in these data sets, compared to 5.2m/2.9m for the single-frequency GPS algorithm without odometry aiding. Odometry is most beneficial to positioning accuracy when GNSS measurement quality is poor. This is demonstrated in data set 1, resulting in a reduction of the horizontal position error’s 95% quantile from 6.2m without odometry aiding to 4.2m with odometry aiding.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Reuper, Björn ; Becker, Matthias ; Leinen, Stefan
Art des Eintrags: Zweitveröffentlichung
Titel: Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm
Sprache: Englisch
Publikationsjahr: 2018
Publikationsdatum der Erstveröffentlichung: 2018
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Sensors
Jahrgang/Volume einer Zeitschrift: 18
(Heft-)Nummer: 9
DOI: 10.3390/s18093052
URL / URN: https://doi.org/10.3390/s18093052
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Localization algorithms based on global navigation satellite systems (GNSS) play an important role in automotive positioning. Due to the advent of autonomously driving cars, their importance is expected to grow even further in the next years. Simultaneously, the performance requirements for these localization algorithms will increase because they are no longer used exclusively for navigation, but also for control of the vehicle’s movement. These requirements cannot be met with GNSS alone. Instead, algorithms for sensor data fusion are needed. While the combination of GNSS receivers with inertial measurements units (IMUs) is a common approach, it is traditionally executed in a single-frequency/single-constellation architecture, usually with the Global Positioning System’s (GPS) L1 C/A signal. With the advent of new GNSS constellations and civil signals on multiple frequencies, GNSS/IMU integration algorithm performance can be improved by utilizing these new data sources. To achieve this, we upgraded a tightly coupled GNSS/IMU integration algorithm to process measurements from GPS (L1 C/A, L2C, L5) and Galileo (E1, E5a, E5b). After investigating various combination strategies, we chose to preferably work with ionosphere-free combinations of L5-L1 C/A and E5a-E1 pseudo-ranges. L2C-L1 C/A and E5b-E1 combinations as well as single-frequency pseudo-ranges on L1 and E1 serve as backup when no L5/E5a measurements are available. To be able to process these six types of pseudo-range observations simultaneously, the differential code biases (DCBs) of the employed receiver need to be calibrated. Time-differenced carrier-phase measurements on L1 and E1 provide the algorithm with pseudo-range-rate observations. To provide additional aiding, information about the vehicle’s velocity obtained by an odometry model fed with angular velocities from all four wheels as well as the steering wheel angle is incorporated into the algorithm. To evaluate the performance improvement provided by these new data sources, two sets of measurement data are collected and the resulting navigation solutions are compared to a higher-grade reference system, consisting of a geodetic GNSS receiver for real-time kinematic positioning (RTK) and a navigation grade IMU. The multi-frequency/multi-constellation algorithm with odometry aiding achieves a 3-D root mean square (RMS) position error of 3.6 m/2.1m in these data sets, compared to 5.2m/2.9m for the single-frequency GPS algorithm without odometry aiding. Odometry is most beneficial to positioning accuracy when GNSS measurement quality is poor. This is demonstrated in data set 1, resulting in a reduction of the horizontal position error’s 95% quantile from 6.2m without odometry aiding to 4.2m with odometry aiding.

URN: urn:nbn:de:tuda-tuprints-77921
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Geodäsie > Physikalische Geodäsie und Satellitengeodäsie
16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Fahrzeugtechnik (FZD)
Hinterlegungsdatum: 16 Sep 2018 19:55
Letzte Änderung: 02 Mai 2019 06:24
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen