TU Darmstadt / ULB / TUbiblio

Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten

Goel, Saurav ; Cross, Graham ; Stukowski, Alexander ; Gamsjäger, Ernst ; Beake, Ben ; Agrawal, Anupam (2018)
Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten.
In: Computational Materials Science, 152
doi: 10.1016/j.commatsci.2018.04.044
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Atomic simulations are widely used to study the mechanics of small contacts for many contact loading processes such as nanometric cutting, nanoindentation, polishing, grinding and nanoimpact. A common assumption in most such studies is the idealisation of the impacting material (indenter or tool) as a perfectly rigid body. In this study, we explore this idealisation and show that active chemical interactions between two contacting asperities lead to significant deviations of atomic scale contact mechanics from predictions by classical continuum mechanics. We performed a testbed study by simulating velocity-controlled, fixed displacement nanoindentation on single crystal tungsten using five types of indenter (i) a rigid diamond indenter (DI) with full interactions, (ii) a rigid indenter comprising of the atoms of the same material as that of the substrate i.e. tungsten atoms (TI), (iii) a rigid diamond indenter with pairwise attraction turned off, (iv) a deformable diamond indenter and (v) an imaginary, ideally smooth, spherical, rigid and purely repulsive indenter (RI). Corroborating the published experimental data, the simulation results provide a useful guideline for selecting the right kind of indenter for atomic scale simulations.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Goel, Saurav ; Cross, Graham ; Stukowski, Alexander ; Gamsjäger, Ernst ; Beake, Ben ; Agrawal, Anupam
Art des Eintrags: Bibliographie
Titel: Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten
Sprache: Englisch
Publikationsjahr: 22 Juni 2018
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computational Materials Science
Jahrgang/Volume einer Zeitschrift: 152
DOI: 10.1016/j.commatsci.2018.04.044
URL / URN: https://doi.org/10.1016/j.commatsci.2018.04.044
Kurzbeschreibung (Abstract):

Atomic simulations are widely used to study the mechanics of small contacts for many contact loading processes such as nanometric cutting, nanoindentation, polishing, grinding and nanoimpact. A common assumption in most such studies is the idealisation of the impacting material (indenter or tool) as a perfectly rigid body. In this study, we explore this idealisation and show that active chemical interactions between two contacting asperities lead to significant deviations of atomic scale contact mechanics from predictions by classical continuum mechanics. We performed a testbed study by simulating velocity-controlled, fixed displacement nanoindentation on single crystal tungsten using five types of indenter (i) a rigid diamond indenter (DI) with full interactions, (ii) a rigid indenter comprising of the atoms of the same material as that of the substrate i.e. tungsten atoms (TI), (iii) a rigid diamond indenter with pairwise attraction turned off, (iv) a deformable diamond indenter and (v) an imaginary, ideally smooth, spherical, rigid and purely repulsive indenter (RI). Corroborating the published experimental data, the simulation results provide a useful guideline for selecting the right kind of indenter for atomic scale simulations.

Freie Schlagworte: MD simulation, Indenter, Nanoindentation, Deformation, Tungsten
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Hinterlegungsdatum: 24 Jul 2018 09:42
Letzte Änderung: 24 Jul 2018 09:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen