TU Darmstadt / ULB / TUbiblio

The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles

Stein, Peter ; Moradabadi, Ashkan ; Diehm, P. Manuel ; Xu, Bai-Xiang ; Albe, Karsten (2018)
The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles.
In: Acta Materialia, 159
doi: 10.1016/j.actamat.2018.07.046
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The demand for higher specific capacity and rate capability has led to the adoption of nanostructured electrodes for lithium-ion batteries. At these length scales, surface effects gain an appreciable impact not only on the electrochemical and mechanical behavior of the electrode material, but also on defect thermodynamics. The focus of this study is the distribution of surface-induced bulk stresses in a LiCoO2 nanoparticle and their impact on the migration of Li vacancies. LiCoO2 is a prototypical cathode material, where the diffusion of Li is mediated by the vacancy mechanism.

For this investigation, elastic parameters and anisotropic surface stress components are computed using Density Functional Theory calculations. They are incorporated into a surface-enhanced continuum model, implemented by means of the Finite Element method. The particle geometry is derived from a Wulff construction, and changes in the formation energy and migration barriers of a Li vacancy are determined using the defect dipole tensor concept.

Within the considered nanoparticle, the surface stresses result in a highly heterogeneous bulk stress distribution with a vortex-like transition region between the tensile particle core and its non-uniformly stressed boundaries. Both the center and the exterior of the particle show enhanced formation energy and migration barriers for of a Li vacancy. These experience a reduction in the transition region in the particle, culminating in a peak increase in vacancy diffusivity and ionic conductivity by circa 10% each. For a particle at a length-scale of 10 nm, this yields an overall increase in ionic conductivity by a mere 0.8%. This surface stress-enhanced conductivity decays rapidly with increasing particle size. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Stein, Peter ; Moradabadi, Ashkan ; Diehm, P. Manuel ; Xu, Bai-Xiang ; Albe, Karsten
Art des Eintrags: Bibliographie
Titel: The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles
Sprache: Englisch
Publikationsjahr: 15 Oktober 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 159
DOI: 10.1016/j.actamat.2018.07.046
Kurzbeschreibung (Abstract):

The demand for higher specific capacity and rate capability has led to the adoption of nanostructured electrodes for lithium-ion batteries. At these length scales, surface effects gain an appreciable impact not only on the electrochemical and mechanical behavior of the electrode material, but also on defect thermodynamics. The focus of this study is the distribution of surface-induced bulk stresses in a LiCoO2 nanoparticle and their impact on the migration of Li vacancies. LiCoO2 is a prototypical cathode material, where the diffusion of Li is mediated by the vacancy mechanism.

For this investigation, elastic parameters and anisotropic surface stress components are computed using Density Functional Theory calculations. They are incorporated into a surface-enhanced continuum model, implemented by means of the Finite Element method. The particle geometry is derived from a Wulff construction, and changes in the formation energy and migration barriers of a Li vacancy are determined using the defect dipole tensor concept.

Within the considered nanoparticle, the surface stresses result in a highly heterogeneous bulk stress distribution with a vortex-like transition region between the tensile particle core and its non-uniformly stressed boundaries. Both the center and the exterior of the particle show enhanced formation energy and migration barriers for of a Li vacancy. These experience a reduction in the transition region in the particle, culminating in a peak increase in vacancy diffusivity and ionic conductivity by circa 10% each. For a particle at a length-scale of 10 nm, this yields an overall increase in ionic conductivity by a mere 0.8%. This surface stress-enhanced conductivity decays rapidly with increasing particle size. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Freie Schlagworte: Anisotropic surface stress, Nanoparticle, Defect thermodynamics, Defect dipole tensor, Lithium cobalt oxide
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 19 Jul 2018 13:32
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Sponsoren: German Research Foundation DFG, Grant Number STE 2350/1-1, Adolf Messer Foundation
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen