TU Darmstadt / ULB / TUbiblio

Bisimulation Invariant Monadic-Second Order Logic in the Finite

Blumensath, Achim and Wolf, Felix
Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, Dániel and Sannella, Donald (eds.) :

Bisimulation Invariant Monadic-Second Order Logic in the Finite.
[Online-Edition: http://drops.dagstuhl.de/opus/volltexte/2018/9121]
In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), Dagstuhl, Germany. In: Leibniz International Proceedings in Informatics (LIPIcs) , 107 . Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik , Dagstuhl, Germany
[Conference or Workshop Item] , (2018)

Official URL: http://drops.dagstuhl.de/opus/volltexte/2018/9121
Item Type: Conference or Workshop Item
Erschienen: 2018
Editors: Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, Dániel and Sannella, Donald
Creators: Blumensath, Achim and Wolf, Felix
Title: Bisimulation Invariant Monadic-Second Order Logic in the Finite
Language: English
Series Name: Leibniz International Proceedings in Informatics (LIPIcs)
Volume: 107
Place of Publication: Dagstuhl, Germany
Publisher: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Institute of Electromagnetic Field Theory
18 Department of Electrical Engineering and Information Technology > Institute of Electromagnetic Field Theory > Computational Engineering (2019 umbenannt in Computational Electromagnetics)
Exzellenzinitiative
Exzellenzinitiative > Graduate Schools
Exzellenzinitiative > Graduate Schools > Graduate School of Computational Engineering (CE)
04 Department of Mathematics
04 Department of Mathematics > Logic
Event Title: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)
Event Location: Dagstuhl, Germany
Date Deposited: 06 Jul 2018 16:07
Official URL: http://drops.dagstuhl.de/opus/volltexte/2018/9121
Export:

Optionen (nur für Redakteure)

View Item View Item