TU Darmstadt / ULB / TUbiblio

Towards Taming Privilege-Escalation Attacks on Android

Bugiel, Sven ; Davi, Lucas ; Dmitrienko, Alexandra ; Fischer, Thomas ; Sadeghi, Ahmad-Reza ; Shastry, Bhargava (2012)
Towards Taming Privilege-Escalation Attacks on Android.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Android's security framework has been an appealing subject of research in the last few years. Android has been shown to be vulnerable to application-level privilege escalation attacks, such as confused deputy attacks, and more recently, attacks by colluding applications. While most of the proposed approaches aim at solving confused deputy attacks, there is still no solution that simultaneously addresses collusion attacks.

In this paper, we investigate the problem of designing and implementing a practical security framework for Android to protect against confused deputy and collusion attacks. We realize that defeating collusion attacks calls for a rather system-centric solution as opposed to application-dependent policy enforcement. To support our design decisions, we conduct a heuristic analysis of Android's system behavior (with popular apps) to identify attack patterns, classify different adversary models, and point out the challenges to be tackled. Then we propose a solution for a system-centric and policy-driven runtime monitoring of communication channels between applications at multiple layers: 1) at the middleware we control IPCs between applications and indirect communication via Android system components. Moreover, inspired by the approach in QUIRE, we establish semantic links between IPCs and enable the reference monitor to verify the call-chain; 2) at the kernel level we realize mandatory access control on the file system (including Unix domain sockets) and local Internet sockets. To allow for runtime, dynamic low-level policy enforcement, we provide a callback channel between the kernel and the middleware. Finally, we evaluate the efficiency and effectiveness of our framework on known confused deputy and collusion attacks, and discuss future directions.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2012
Autor(en): Bugiel, Sven ; Davi, Lucas ; Dmitrienko, Alexandra ; Fischer, Thomas ; Sadeghi, Ahmad-Reza ; Shastry, Bhargava
Art des Eintrags: Bibliographie
Titel: Towards Taming Privilege-Escalation Attacks on Android
Sprache: Deutsch
Publikationsjahr: Februar 2012
Buchtitel: 19th Annual Network & Distributed System Security Symposium (NDSS)
Zugehörige Links:
Kurzbeschreibung (Abstract):

Android's security framework has been an appealing subject of research in the last few years. Android has been shown to be vulnerable to application-level privilege escalation attacks, such as confused deputy attacks, and more recently, attacks by colluding applications. While most of the proposed approaches aim at solving confused deputy attacks, there is still no solution that simultaneously addresses collusion attacks.

In this paper, we investigate the problem of designing and implementing a practical security framework for Android to protect against confused deputy and collusion attacks. We realize that defeating collusion attacks calls for a rather system-centric solution as opposed to application-dependent policy enforcement. To support our design decisions, we conduct a heuristic analysis of Android's system behavior (with popular apps) to identify attack patterns, classify different adversary models, and point out the challenges to be tackled. Then we propose a solution for a system-centric and policy-driven runtime monitoring of communication channels between applications at multiple layers: 1) at the middleware we control IPCs between applications and indirect communication via Android system components. Moreover, inspired by the approach in QUIRE, we establish semantic links between IPCs and enable the reference monitor to verify the call-chain; 2) at the kernel level we realize mandatory access control on the file system (including Unix domain sockets) and local Internet sockets. To allow for runtime, dynamic low-level policy enforcement, we provide a callback channel between the kernel and the middleware. Finally, we evaluate the efficiency and effectiveness of our framework on known confused deputy and collusion attacks, and discuss future directions.

Freie Schlagworte: Secure Things;Security;Secure Architectures
ID-Nummer: TUD-CS-2012-0002
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Systemsicherheit
Profilbereiche
Profilbereiche > Cybersicherheit (CYSEC)
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
Hinterlegungsdatum: 04 Aug 2016 10:13
Letzte Änderung: 03 Jun 2018 21:31
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen