TU Darmstadt / ULB / TUbiblio

The Silence of the LANs: Efficient Leakage Resilience for IPsec VPNs (full version)

Sadeghi, Ahmad-Reza ; Schulz, Steffen ; Varadharajan, Vijay :
The Silence of the LANs: Efficient Leakage Resilience for IPsec VPNs (full version).

[Report], (2012)

Kurzbeschreibung (Abstract)

Virtual Private Networks (VPNs) are increasingly used to build logically isolated networks. However, existing VPN designs and deployments neglect the problem of traffic analysis and covert channels. Hence, there are many ways to infer information from VPN traffic with- out decrypting it. Many proposals were made to mitigate network covert channels, but previous works remained largely theoretical or resulted in prohibitively high padding overhead and performance penalties. In this work, we (1) analyse the impact of covert channels in IPsec, (2) present several improved and novel approaches for covert channel mit- igation in IPsec, (3) propose and implement a system for dynamic perfor- mance trade-offs, and (4) implement our design in the Linux IPsec stack and evaluate its performance for different types of traffic and mitigation policies. At only 24% overhead, our prototype enforces tight information- theoretic bounds on all information leakage.

Typ des Eintrags: Report
Erschienen: 2012
Autor(en): Sadeghi, Ahmad-Reza ; Schulz, Steffen ; Varadharajan, Vijay
Titel: The Silence of the LANs: Efficient Leakage Resilience for IPsec VPNs (full version)
Sprache: Deutsch
Kurzbeschreibung (Abstract):

Virtual Private Networks (VPNs) are increasingly used to build logically isolated networks. However, existing VPN designs and deployments neglect the problem of traffic analysis and covert channels. Hence, there are many ways to infer information from VPN traffic with- out decrypting it. Many proposals were made to mitigate network covert channels, but previous works remained largely theoretical or resulted in prohibitively high padding overhead and performance penalties. In this work, we (1) analyse the impact of covert channels in IPsec, (2) present several improved and novel approaches for covert channel mit- igation in IPsec, (3) propose and implement a system for dynamic perfor- mance trade-offs, and (4) implement our design in the Linux IPsec stack and evaluate its performance for different types of traffic and mitigation policies. At only 24% overhead, our prototype enforces tight information- theoretic bounds on all information leakage.

Freie Schlagworte: Secure Things;Secure Models
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Systemsicherheit
Profilbereiche
Profilbereiche > Cybersicherheit (CYSEC)
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
20 Fachbereich Informatik > EC SPRIDE
Hinterlegungsdatum: 04 Aug 2016 10:13
ID-Nummer: TUD-CS-2012-0165
Verwandte URLs:
Export:

Optionen (nur für Redakteure)

Eintrag anzeigen Eintrag anzeigen